User Intent Identification from Online Discussions Using a Joint Aspect-Action Topic Model

نویسندگان

  • Ghasem Heyrani-Nobari
  • Tat-Seng Chua
چکیده

Online discussions are growing as a popular, effective and reliable source of information for users because of their liveliness, flexibility and up-to-date information. Online discussions are usually developed and advanced by groups of users with various backgrounds and intents. However because of the diversities in topics and issues discussed by the users, supervised methods are not able to accurately model such dynamic conditions. In this paper, we propose a novel unsupervised generative model to derive aspect-action pairs from online discussions. The proposed method simultaneously captures and models these two features with their relationships that exist in each thread. We assume that each user post is generated by a mixture of aspect and action topics. Therefore, we design a model that captures the latent factors that incorporates the aspect types and intended actions, which describe how users develop a topic in a discussion. In order to demonstrate the effectiveness of our approach, we empirically compare our model against the state of the art methods on a largescale discussion dataset crawled from the apple discussion forum with over 3.3 million user posts from 340k discussion threads.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intent-Based User Segmentation with Query Enhancement

INTENT-BASED USER SEGMENTATION WITH QUERY ENHANCEMENT by Wei Xiong With the rapid advancement of the internet, accurate prediction of user’s online intent underlying their search queries has received increasing attention from the online advertising community. As a rich source of information on web user’s behavior, query logs have been leveraged by advertising companies to deliver personalized a...

متن کامل

Learning User Intent from Action Sequences on Interactive Systems

Interactive systems have taken over the web and mobile space with increasing participation from users. Applications across every marketing domain can now be accessed through mobile or web where users can directly perform certain actions and reach a desired outcome. Actions of user on a system, though, can be representative of a certain intent. Ability to learn this intent through user’s actions...

متن کامل

Predicting Intent Using Activity Logs: How Goal Specificity and Temporal Range Affect User Behavior

People have different intents in using online platforms. They may be trying to accomplish specific, short-term goals, or less well-defined, longer-term goals. While understanding user intent is fundamental to the design and personalization of online platforms, little is known about how intent varies across individuals, or how it relates to their behavior. Here, we develop a framework for unders...

متن کامل

Social Media Analysis via Network Approaches

Social media such as online forum and weblog are composed of dense interactions between user and content where network models are often appropriate for analysis. Using Markov logic network, user participation models can be developed to help us gain insights on the latent base topics of online discussions. Furthermore, joint non-negative matrix factorization model of participation and content da...

متن کامل

Joint Online Spoken Language Understanding and Language Modeling With Recurrent Neural Networks

Speaker intent detection and semantic slot filling are two critical tasks in spoken language understanding (SLU) for dialogue systems. In this paper, we describe a recurrent neural network (RNN) model that jointly performs intent detection, slot filling, and language modeling. The neural network model keeps updating the intent prediction as word in the transcribed utterance arrives and uses it ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014